

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2017

Partial Differential Equations & Numerical Methods

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 × 2=20 Marks)

- 1. Express f(x) = x as a Fourier series in the interval $-\pi < x < \pi$
- 2. Write Dirichlet's conditions.
- 3. Obtain the Partial differential equation by eliminating the arbitrary function f from $f(x + yz, x^2 + y^2 z^2) = 0$
- 4. Find the complete integral of $p^2q^2(px + qy z) = 2$

5. Use Method of separation of variables to solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$

- 6. Write one -dimensional Heat equation
- 7. Find a real root of the equation $x^3 5x + 1 = 0$ using Bisection method.
- 8. Evaluate $\Delta tan^{-1}x$
- 9. Fit a straight line y = a + bx for the following data.

 x	0	1	3	6	8	
у	1	3	2	5	4	

10. If two regression lines are 3x + 2y = 26 and 6x + y = 31.then find the mean values and the correlation coefficient between x and y

Part-B $(5 \times 10 = 50 Marks)$

- 11. a) Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$
 - b) Find the Fourier series expansion for $f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$ [5]

Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + - - - - = \frac{\pi^2}{8}$

- 12. a) Solve $6yz 6pxy 3qy^2 + pq = 0$ by Charpit's method.
 - b) Solve $(x + y^2)p + yq = z + x^2$. [5]
- 13. a) A tightly stretched string of length *l* with fixed ends is initially in equilibrium Position. [6] It is set vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{l}$. Find the displacement y(x, t)
 - b) Find the solution of Laplace equation by the Method of separation of variables. [4]
- 14. a) Apply Runge-Kutta Fourth order method to find an approximate value of y for x = 0.2 [6] insteps of 0.1. If $\frac{dy}{dx} = x + y^2$ given that y(0) = 1
 - b) Find the cubic polynomial for the following data.

X:	0	1	2	3
Y:	1	2	1	10

[5]

[5]

[4]

[5]

			20.1.	
15. a) Obtain the regression line y on x fo	r the following data.			[5]

X:	1	2	3	4	5
Y:	2	5	3	8	7

b) If θ is the acute angle between the two regression lines then show that:

:: 2 ::

$$tan\theta = \frac{1 - r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$

Explain the significance when r = 0

- 16. a) Obtain the Fourier half- range cosine series for $f(x) = x \sin x$ in the interval [5] $0 < x < \pi$
 - b) Find the complete integral of $\sqrt{p} + \sqrt{q} = 2x^2 + y$ [5]
- 17. Answer any two of the following:
 - a) Use the Lagrange's interpolation formula to find the value of y when x = 10 for the [5] following data.

X:	5	6	9	11	
Y:	12	13	14	16	-

b) Derive the normal equations by the method of least squares for the straight line [5] y = a + bx

c) Solve one dimensional heat equation by variables separable method.

[5]

§§§§§§